Abstract

Background aimsDecentralized, or distributed, manufacturing that takes place close to the point of care has been a manufacturing paradigm of heightened interest within the cell therapy domain because of the product's being living cell material as well as the need for a highly monitored and temperature-controlled supply chain that has the potential to benefit from close proximity between manufacturing and application. MethodsTo compare the operational feasibility and cost implications of manufacturing autologous chimeric antigen receptor T (CAR T)-cell products between centralized and decentralized schemes, a discrete event simulation model was built using ExtendSIM 9 for simulating the patient-to-patient supply chain, from the collection of patient cells to the final administration of CAR T therapy in hospitals. Simulations were carried out for hypothetical systems in the UK using three demand levels—low (100 patients per annum), anticipated (200 patients per annum) and high (500 patients per annum)—to assess resource allocation, cost per treatment and system resilience to demand changes and to quantify the risks of mix-ups within the supply chain for the delivery of CAR T treatments. ResultsThe simulation results show that although centralized manufacturing offers better economies of scale, individual facilities in a decentralized system can spread facility costs across a greater number of treatments and better utilize resources at high demand levels (annual demand of 500 patients), allowing for an overall more comparable cost per treatment. In general, raw material and consumable costs have been shown to be one of the greatest cost drivers, and genetic modification-associated costs have been shown to account for over one third of raw material and consumable costs. Turnaround time per treatment for the decentralized scheme is shown to be consistently lower than its centralized counterpart, as there is no need for product freeze-thaw, packaging and transportation, although the time savings is shown to be insignificant in the UK case study because of its rather compact geographical setting with well-established transportation networks. In both schemes, sterility testing lies on the critical path for treatment delivery and is shown to be critical for treatment turnaround time reduction. ConclusionsConsidering both cost and treatment turnaround time, point-of-care manufacturing within the UK does not show great advantages over centralized manufacturing. However, further simulations using this model can be used to understand the feasibility of decentralized manufacturing in a larger geographical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.