Abstract

An integrated readout computed radiography system (Fuji XU-D1) incorporating dual-side imaging plates (ST-55BD) was analyzed in terms of modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) for standard beam qualities RQA 9 and RQA 5. NPS and DQE were assessed using a detector entrance air kerma consistent with clinical practice for chest radiography. Similar investigation was performed on a standard reader (Fuji FCR 5000) using single-side imaging plates (ST-VI). Negligible differences were found between the MTFs of the two imaging systems for RQA 9, whereas for RQA 5 the single-side system exhibited slightly superior MTF. Regarding noise response, the dual-side system turned out to be better performing for both beam qualities over a wide range of frequencies. For RQA 9, at 8 microGy, the DQE of the dual-side system was moderately higher over the whole frequency range, whereas for RQA 5, at 10 microGy, significant improvement was found at low- and midrange frequencies. As an example, at 1 cycle/mm, the following improvements in the DQE of the dual-side system were observed: +22% (RQA 9, at 8 microGy), +50% (RQA 9, at 30 microGy), and +45% (RQA 5, at 10 microGy).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.