Abstract

A 3D Computational Fluid Dynamics (CFD) analysis has been carried out to better understand the internal fluid dynamics of a regenerative blower used for hydrogen recirculation in a Proton Exchange Membrane (PEM), Fuel Cell (FC) utilized for automotive applications. The obtained results are used to highlight the motion of the fluid in the vanes and in the side channel of the machine and to verify the main hypotheses put forward concerning the theoretical 1D model set up by the authors in previous works on the basis of the momentum exchange theory. Finally, the CFD analysis has been used to point out the effect of the slope of the vanes on the performance of the regenerative blower, and the results have been compared with those obtained using of the 1D model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.