Abstract

Composting is widely used to recycle a variety of different organic wastes. In this study, dairy manure, chicken litter, biosolids, yard trimmings and food waste were selected as representative municipal and agricultural feedstocks and composted in simulated thermophilic composting reactors to compare and evaluate the GHG emissions. The results showed that the highest cumulative emissions of CO2, CH4 and N2O were observed during yard trimmings composting (659.14 g CO2 kg-1 DM), food waste composting (3308.85 mg CH4 kg-1 DM) and chicken litter composting (1203.92 mg N2O kg-1 DM), respectively. The majority of the carbon was lost in the form of CO2. The highest carbon loss by CO2 and CH4 emissions and the highest nitrogen loss by N2O emission occurred in dairy manure (41.41%), food waste (0.55%) and chicken litter composting (3.13%), respectively. The total GHG emission equivalent was highest during food waste composting (365.28 kg CO2-eq ton-1 DM) which generated the highest CH4 emission and second highest N2O emissions, followed by chicken litter composting (341.27 kg CO2-eq ton-1 DM), which had the highest N2O emissions. The results indicated that accounting for GHG emissions from composting processes when it is being considered as a sustainable waste management practice was of great importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.