Abstract

Infiltration is an important component of the hydrological cycle. It provides soil moisture in the vadose zone to support plant growth. This study was conducted to compare the validity of four infiltration models with measured values from the double ring infiltrometer. The parameters of the four models compared were estimated using the linear regression analysis. The C.C was used to show the performance of the predictability of the models. The RMSE, MAE and MBE were employed to check the anomalies between the predicted and the observed values. The results showed that, average values of the C.C ranged from 0.9294 - 0.9852. The average values of the RMSE were 4.0033, −17.489, 11.2400 and 49.8448; MAE were 3.1341, 15.9802, 10.6525, and 61.4736; and MBE were 0.0786, 9.5755, 0.0007 and 47.0204 for Philip, Horton, Green Ampt and Kostiakov respectively for the wetland soils. Statistical results also from the Fisher’s multiple comparison test show that the mean infiltration rate estimated from the Green Ampt’s, Philip’s and Horton’s model was not significantly different (p > 0.05) from the observed. The results indicated that the Kostiakov’s model had the highest deviations as it overestimated the measured data in all the plots. Comparison of the statistical parameters C.C, RMSE, MAE, and MBE for the four models indicates that the Philip’s model agreed well with the measured data and therefore, performed better than the Green Ampt’s, Horton’s and Kostiakov’s models respectively in that order for Besease wetland soils. Estimation of infiltration rate by the Philip’s model is important in the design of irrigation schemes and scheduling. Therefore, in the absence of measured infiltration data, the Philip’s model could be used to produce infiltration information for inland valley bottom soils that exhibit similar characteristic as Besease wetland soils.

Highlights

  • Infiltration is the process by which water on the ground surface enters the soil

  • The best fit model was selected on the basis of Maximum of coefficient of correlation (C.C.), minimum of Root Mean Square Error (RMSE), minimum of Maximum Absolute error (MAE) and Minimum of Mean Bias error criteria

  • The prediction accuracy of four infiltration models was validated with measured values using the double ring infiltrometer

Read more

Summary

Introduction

Infiltration is the process by which water on the ground surface enters the soil. Infiltration plays a vital role in soil and water conservation as it determines the amount of runoff over the soil surface during irrigation and precipitation. The infiltration rate of a soil, ability of the soil to accept heavy rainfall or irrigation depends on the characteristics of the soil [1] [2]. Poor infiltration rate indicates potential of high runoff and erosion which affects the amount of water stored in the plant root zone [4]. This makes it difficult for the soil to meet the required water demand for crop production

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.