Abstract

Mathematical models of SO 2 capture by uncalcined limestone (CaCO 3) particles with solid attrition were compared under pressurized fluidized bed combustion conditions. For reaction, we used: (1) a shrinking core model with a distinct border between the product (CaSO 4) layer with a conversion of unity and unreacted core with a conversion of zero, and (2) a distributed reaction model with smooth transition from the unreacted part to the product part with conversion between zero and unity. Continuous attrition and intermittent attrition were compared for attrition. Apparent conversion of the solid was overestimated regardless of the reaction model for continuous attrition. Attrition model plays an important role in determining limestone utilization efficiency, whereas the reaction model played only a minor role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.