Abstract

BackgroundKnee osteoarthritis (OA) is a degenerative joint disease that affects millions of individuals each year. Several biomechanical variables during walking have been identified as risk factors for developing knee OA, including the peak external knee adduction moment (KAM) and the knee flexion angle at initial contact. Many interventions have been studied to help mitigate these risk factors, including footwear. However, it is largely unknown how varying shoe cushioning may affect walking biomechanics related to knee OA risk. Research QuestionWhat is the effect of maximally and minimally cushioned shoes on walking biomechanics compared to a traditionally cushioned shoe in older females? MethodsWalking biomechanics in three shoes (maximal, traditional, minimal) were collected on 16 healthy females ages 50–70 using an 8-camera 3D motion capture system and two embedded force plates. Key biomechanical variables related to knee OA disease risk were compared between shoes using repeated measures ANOVAs. ResultsThe KAM was significantly larger in the maximal shoe (p = 0.005), while the knee flexion angle at initial contact was significantly larger in both the maximal and minimal shoe compared to the traditional shoe (p = .000). Additionally, the peak knee flexion angle (p = .000) and the loading rates of the vertical ground reaction force were (instantaneous: p = 0.001; average: p = .010) were significantly higher in the minimal shoe. SignificanceWhile these results are specific to the shoes used in this study, clinicians should exercise caution in prescribing maximal or minimal shoes to females in this age group who may be at risk of knee OA given these results. Research is needed on the effect of these shoes in patients with knee OA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.