Abstract

Due to the non-storable nature of electric energy, short-term and long-term electricity generation and consumption forecast are critical to keeping electricity market in balance. In addition, the production estimate of wind energy is parallel to the estimate of wind speed. Since wind speed forecasts includes seasonal and time-dependent trends, time series forecasting methods produce successful results in wind energy forecasting. However, choosing the most appropriate time series forecasting method for short-term and long-term production forecasts is of special importance. In this study, short-term and long-term wind speed estimations were made for the wind turbine at Kirikkale University by using Exponential Smoothing (ES) and ARMA (Auto Regressive Moving Average) methods. The most suitable methods for forecasting short-term and long-term wind speed have been determined with the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.