Abstract
Nonnormality and variance heterogeneity affect the validity of the traditional tests for treatment group equality (e.g. ANOVA F-test and t-test), particularly when group sizes are unequal. Adopting trimmed means instead of the usual least squares estimator has been shown to be mostly affective in combating the deleterious effects of nonnormality. There are, however, practical concerns regarding trimmed means, such as the predetermined amount of symmetric trimming that is typically used. Wilcox and Keselman proposed the Modified One- Step M-estimator (MOM) which empirically determines the amount of trimming. Othman et al. found that when this estimator is used with Schrader and Hettmansperger's H statistic, rates of Type I error were well controlled even though data were nonnormal in form. In this paper, we modified the criterion for choosing the sample values for MOM by replacing the default scale estimator, MADn, with two robust scale estimators, Sn and Tn , suggested by Rousseeuw and Croux (1993). To study the robustness of the modified methods, conditions that are known to negatively affect rates of Type I error were manipulated. As well, a bootstrap method was used to generate a better approximate sampling distribution since the null distribution of MOM-H is intractable. These modified methods resulted in better Type I error control especially when data were extremely skewed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.