Abstract

Silk production has evolved to be energetically efficient and functionally optimized, yielding a material that can outperform most industrial fibres, particularly in toughness. Spider silk has hitherto defied all attempts at reproduction, despite advances in our understanding of the molecular mechanisms behind its superb mechanical properties. Spun fibres, natural and man-made, rely on the extrusion process to facilitate molecular orientation and bonding. Hence a full understanding of the flow characteristics of native spinning feedstock (dope) will be essential to translate natural spinning to artificial silk production. Here we show remarkable similarity between the rheologies for native spider-dragline and silkworm-cocoon silk, despite their independent evolution and substantial differences in protein structure. Surprisingly, both dopes behave like typical polymer melts. This observation opens the door to using polymer theory to clarify our general understanding of natural silks, despite the many specializations found in different animal species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.