Abstract

Recently, edge halogenated graphene-nanosheets (EH-GNS) have been discovered to provide low cost oxygen reduction reaction (ORR) catalysis for alkaline fuel cells. Particularly important is that EH-GNS lead to water as the preferred product whereas undoped graphene leads to peroxide. In order to understand the ORR mechanism, we use density functional theory (DFT) to determine the most probable conformations of the doped graphene after synthesis by ball-milling, to calculate the binding energies of each species, and then to obtain the barriers of each step of the ORR. Our results predict that ORR occurs on the edge of the zigzag with onset potentials of 0.62 (chlorine), 0.66 (bromine), and 0.75 V (iodine) vs. the reversible hydrogen electrode (RHE). Based on our validated theoretical framework, we surveyed other molecules (TeH, BiH2, SbH2, OCH3, SCH3, SeCH3) as graphene edge molecules to test for promising ORR catalysts, predicting that SCH3 would be best.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.