Abstract
Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition usually requires prolonged data measurements from the user (target), transfer learning reusing pre-measured (source) data from other users and pre-trained classifiers can be applied to sEMG data to reduce the measurement time. However, little knowledge is available regarding the combination of transfer learning methods and classifiers in sEMG data applications. Thus, we investigated the classification accuracy of data- and parameter-space-based transfer learning with shallow or deep classifiers in cross-subject sEMG classification. The dataset contains eight classes of forearm motions recorded from 25 volunteer participants. We used a support vector machine (SVM) as a shallow classifier as well as a deep neural network architecture, referred to as an artificial neural network (ANN), as a deep classifier. In addition, we used style transfer mapping (STM) as a data-space-based transfer learning method and fine-tuning (FT) as a parameter-space-based transfer learning method. Consequently, the classification accuracy of the ANN was higher than that of the SVM, regardless of the combinational use of transfer learning. STM and FT significantly improved the classification accuracy compared with non-transfer cases regardless of the classifier (note that FT can only be used with the ANN). In particular, the combined use of FT and the ANN yielded the best accuracy. These findings suggest that parameter-space-based transfer learning and deep classifiers are suitable for cross-subject sEMG classification. The combined use of parameter-space-based transfer learning and deep classifiers can effectively reduce the data measurement time of sEMG-based HCI applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.