Abstract

We administered high-frequency jet ventilation (HFJV) to a tracheal-lung model with connectors of internal diameter 2.5-8.5 mm to simulate ventilation through varying degrees of laryngotracheal stenosis. With reductions in diameter, end-expiratory pressure (EEP) and peak inspiratory pressure (PIP) increased. During supraglottic, translaryngeal, and transtracheal HFJV, respectively, EEP was > or =10 mm Hg at diameters narrower than 5.5, 4.0, and 3.5 cm, and PIP was >20 mm Hg at diameters narrower than 5.5, 3.5, and 3.0 cm. EEP and PIP were greater during supraglottic HFJV than during translaryngeal and transtracheal HFJV (P < 0.01). At diameters of <3.5 and 4.0 cm, respectively, PIP and EEP increased and were significantly greater (P < 0.01) during translaryngeal HFJV than during transtracheal HFJV. In a second experiment, the degree of ventilation and air entrainment was assessed by administering nitrous oxide 4 L/min to the model. Nitrous oxide concentrations were significantly (P < 0.01) smaller and nitrogen concentrations were significantly (P < 0.01) larger during supraglottic HFJV than either translaryngeal or transtracheal HFJV. The larger EEP and PIP associated with supraglottic HFJV may be attributable to increased ventilation and air entrainment compared with translaryngeal and transtracheal HFJV. Ventilatory driving pressure during supraglottic high-frequency jet ventilation may be reduced to minimize high airway pressures and hence the potential for pulmonary barotrauma in patients with laryngotracheal stenosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.