Abstract

In silico experiments have been used for a better understanding of the electrical activity of cardiac myocytes, usually via models based on nonlinear systems of ordinary differential equations. Many different models for cardiac myocytes are available that vary on the level of complexity, depending on how detailed the phenomena is described. Long simulations of realistic and complex models are computationally expensive. To cope with this problem, this work compares different techniques to automatically speed up the numerical solution of cardiac models: (a) adaptive time step method, (b) Partial Evaluation (PE) and Lookup Tables (LUTs), and (c) an automatic way to find and exploit code concurrency via OpenMP directives. All the techniques were implemented as part of an automatic code generator for the numerical solution of models that are described in the CellML markup language. Experimental results demonstrated that the adaptive time step simulations were up to 32 times faster than the traditional Euler that use fixed time step. Combined with parallel computing on a multicore processor the execution time was further decreased and simulations were 41 times faster. Finally, the LUTs and PE techniques resulted in a 117-fold improvement in computation time over the Euler method and 72-fold improvement when compared to the traditional Rush–Larsen method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.