Abstract

Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs over recent decades primarily due to a combination of declining coral cover and changing benthic community composition. Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total alkalinity (TA) combined with residence time to calculate an instantaneous measurement of NEC. Census-based approaches combine annual growth rates with benthic cover and reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC techniques to compare the mass-balance generated by the two methods and identify the dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the annual 2011 census-based NEC 2.35±1.01 kg CaCO3•m-2•y-1 and the chemistry-based NEC 2.23±1.02 kg CaCO3•m-2•y-1 at Hog Reef. An additional record of Hog Reef TA data calculated from an autonomous CO2 mooring measuring pCO2 and modeled pHtotal every 3-hours highlights the dynamic temporal variability in coral reef NEC. This ability for chemistry-based NEC techniques to capture higher frequency variability in coral reef NEC allows the mechanisms driving NEC variability to be explored and tested. Just four coral species, Diploria labyrinthiformis, Pseudodiploria strigosa, Millepora alcicornis, and Orbicella franksi, were identified by the census-based NEC as contributing to 94±19% of the total calcium carbonate production at Hog Reef suggesting these species should be highlighted for conservation to preserve current calcium carbonate production rates at Hog Reef. As coral cover continues to decline globally, the agreement between these NEC estimates suggest that either method, but ideally both methods, may serve as a useful tool for coral reef managers and conservation scientists to monitor the maintenance of coral reef structure and ecosystem services.

Highlights

  • Coral reefs provide a great multitude of ecosystem goods and services to humanity including renewable food and material resources, shoreline protection, and nutrient cycling (e.g., Smith, 1978; Salvat, 1992; Spurgeon, 1992; Done et al, 1996; Moberg and Folke, 1999; de Groot et al, 2012)

  • Measured rates of sand CaCO3 dissolution were higher than microborer CaCO3 dissolution rates per unit area, the smaller total area of sands resulted in areal CaCO3 dissolution (± uncertainty) being dominated by microborers (93 ± 57%) with sand CaCO3 dissolution (7 ± 4%) making up the remainder (Table 2; Figure 4)

  • These findings that the census-based budget are in close agreement with the bottle chemistry net ecosystem calcification (NEC) suggest that the summation of the components of coral reef calcification and CaCO3 dissolution are representative of the total balance between calcification and CaCO3 dissolution occurring at Hog Reef

Read more

Summary

Introduction

Coral reefs provide a great multitude of ecosystem goods and services to humanity including renewable food and material resources, shoreline protection, and nutrient cycling (e.g., Smith, 1978; Salvat, 1992; Spurgeon, 1992; Done et al, 1996; Moberg and Folke, 1999; de Groot et al, 2012). Tropical reef coral cover is currently declining due to a combination of local and global pressures (i.e., overfishing, sedimentation, disease, warming, and acidification) with ∼80% declines in coral cover observed across the Caribbean since the mid-1970s (Gardner et al, 2003). These declines in overall Caribbean coral cover are combined with an overall loss of reef structural complexity (Alvarez-Filip et al, 2009) and coral community shifts toward more slowly calcifying and lessstructurally complex opportunistic coral species (Alvarez-Filip et al, 2013). Coral reef accretion and maintenance of geomorphic structure depends on NEC as well as the net import, export, and erosion of CaCO3 material (e.g., Scoffin, 1992; Milliman, 1993; Kleypas et al, 2001; Perry et al, 2008; Montaggioni and Braithwaite, 2009; Tribollet and Golubic, 2011; Perry et al, 2012)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.