Abstract

BackgroundYoung wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids—an economically costly pest in cereal production.ResultsIn this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum ‘Svevo’ and wild emmer ‘Zavitan,’ and one hexaploid bread wheat, ‘Chinese Spring.’ The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid’s (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes.ConclusionsOur results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.

Highlights

  • IntroductionTo reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers

  • Young wheat plants are continuously exposed to herbivorous insect attack

  • Our results indicated that the domesticated bread wheat Chinese Spring, which showed the lowest amount of aphid progeny, possesses a varied array of benzoxazinoid compounds (BXD), including DIMBOA and DIM2BOA-Glc, and HDMBOA-Glc (Fig. 5)

Read more

Summary

Introduction

To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are critical in providing an efficient defense for wheat seedlings against aphids—an economically costly pest in cereal production. Examples of herbivore-induced defense mechanisms are the accumulation of toxic chemicals such as benzoxazinoids, glucosinolates, and alkaloids, which are classes of specialized metabolites that function as deterrents Another mechanism is mechanical defense, including physical barriers such as the increased density of thorns, spikes, or trichomes [8,9,10,11,12,13]. The herbivore-induced mechanisms are mediated by the modification of signaling (i.e., jasmonic and salicylic acid) [17], which allows the plants to conserve metabolic resources and energy to be directed toward growth and reproduction in the absence of insect herbivory

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.