Abstract

The silkworm (Bombyx mori) is a domesticated holometabolous insect, and more than 400 Mendelian mutations have been identified. Investigating the mechanism behind these silkworm mutants is essential for understanding the development of silkworms and other lepidopterans, and lethal genes could be used for pest control. The lethal silkworm mutant in the fourth instar (l-4i) has been recently found; however, the underlying mechanism is not yet clear. Herein, we studied the l-4i mutant and its wild-type strain P33 using RNA sequencing (RNA-seq). Our results revealed that 2013 genes were significantly downregulated, and 20 biological processes, including spliceosomal snRNP assembly, protein folding and protein catabolic process, were significantly enriched in these downregulated genes. Moreover, 2405 genes were significantly upregulated in the l-4i mutant, and 20 biological processes, including purine nucleobase metabolic process, nucleoside metabolic process and de novo IMP biosynthetic process, were significantly enriched in these upregulated genes. The study suggests that the imbalance of multiple biological processes and pathways and abnormal protein generation from RNA alternative splicing may cause the death of the l-4i mutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.