Abstract

Fish skin is the first barrier against external invasion, and also an important interface for communication between males and females during reproduction. Nonetheless, sexual dimorphism in the physiology of fish skins is still poorly understood. Herein, transcriptomes of skin were comparatively analysed between males and females in spinyhead croaker, Collichthys lucidus. Totally, 170 differentially expressed genes (DEG) were detected, including 79 female-biased genes and 91 male-biased genes. Gene ontology (GO) annotation items of the DEGs were mainly enriched in biological process items (86.2%), including regulation of biological processes, responses to chemical and biological stimuli, transport and secretion, movement, immune response, tissue development, etc. In KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, the male-biased genes were enriched in pathways including those related to immunity such as the TNF signalling pathway and IL-17 signalling pathway, whereas the female-biased genes were enriched in pathways including those related to female steroids such as ovarian steroidogenesis and oestrogen signalling pathway. In addition, odf3 was found to be a male-specific expression gene, being a candidate marker for phenotypic sex. Thus, the sexual difference in gene expression in fish skin in spawning season was uncovered by transcriptome analysis for the first time, providing new insights into sexual dimorphism in the physiology and functions of fish skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.