Abstract
Eriocheir sinensis is an euryhaline crab found from East Asia to Europe and North America. This species can live in freshwater and seawater due to the unique physiological characteristics of their life cycle, which allows them to adapt and inhabit different habitats in a wide range of environments. Despite the wealth of studies focusing on adaptation mechanism of E. sinensis to specific environmental factors, the adaptation mechanisms to wild habitats with coexisting environmental factors are not well understood. In this study, we conducted a transcriptome analysis to investigate gene expression differences related to habitat adaptation of E. sinensis from two wild habitats with different environmental factors in the Han River, Korea. A total of 138,261 unigenes were analyzed, of which 228 were analyzed as differentially expressed genes (DEGs) between the two wild habitats. Among 228 DEGs, 110 DEGs were annotated against databases; most DEGs were involved in energy metabolism, immunity, and osmoregulation. Moreover, DEG enrichment analysis showed that upregulated genes were related to biosynthesis, metabolism, and immunity in an habitat representing relatively high salinity whereas downregulated genes were related to ion transport and hypoxia response in habitats with relatively low salinity and dissolved oxygen. The present findings can serve as foundation for future E. sinensis culture or conservation approaches in natural conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.