Abstract

Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts have been widely found in drinking water. In vitro test found HNMs could induce higher cytotoxicity and genotoxicity than trihalomethanes and haloacetic acids. However, data on toxic effect from in vivo experiment is limited. In this study, bromonitromethane (BNM), bromochloronitromethane (BCNM) and trichloronitromethane (TCNM) were chosen as target HNMs, and exposed to mice for 30 d. Hepatic toxicity and serum metabolic profiles were determined to reveal toxic effects and mechanisms of the three HNMs. Results showed the three HNMs significantly decreased relative liver weight, indicating liver is one of the target organs. Further, the three HNMs exposure damaged hepatic antioxidant defense system, and increased oxidative DNA damage. Nuclear magnetic resonance based metabolomics analysis found amino acid metabolism and carbohydrate metabolism were disturbed by HNMs exposure. Some metabolites in these metabolisms are related to oxidative stress and damage. Combined with above results, BNM had the highest toxicity, followed by BCNM and TCNM, indicating bromo-HNMs had higher toxicity than chloro-HNMs. Induction of oxidative stress is one of the toxicity mechanisms of HNMs. This study firstly provides the insight into in vivo toxicity of HNMs and their underlying mechanisms based on metabolomics methods, which is very useful for their health risk assessment in drinking water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.