Abstract

This paper comparatively investigated the spreading process of an oil droplet on the surface of highly hydrophobic solid (Teflon) in air and water media using a high-speed imaging technology, and analyzed their differences in spreading behavior from the perspective of empirical relations and energy conservation. Furthermore, the classical HD and MKT wetting models were applied to describe the oil droplet spreading dynamics to reveal the spreading mechanism of oil droplets on the Teflon in different media environments. Results showed that the entire spreading process of oil droplets on Teflon in air could be separated into three stages: the early linear fast spreading stage following , the intermediate exponential slow spreading stage obeying , and the late spreading stage described by . However, the dynamics behavior of dynamic contact angle during the oil droplet spreading on Teflon in water could be well described by these expressions, and . Clearly, a significant difference in the oil droplet spreading behavior in air and water media was found, and the absence of the intermediate exponential spreading stage in the oil–water–Teflon system could be attributed to the difference in the dissipated energy of the system because the dissipation energy in the oil–water–solid system included not only the viscous dissipation energy of the boundary layer of oil droplet, but also that of the surrounding water which was not included in the dissipation energy of the oil–air–solid system. Moreover, the quantitative analysis of wetting models suggested that the MKT model could reasonably describe the late spreading dynamics of oil droplets (low TPCL velocities), while the HD model may be more suitable for describing the oil droplet spreading dynamics at the early and intermediate spreading stages (high TPCL velocities).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.