Abstract

AbstractThe reliability of InP/InGaAs heterojunction bipolar transistors (HBTs) with highly carbon-doped and zinc-doped InGaAs base layers grown by metal-organic vapor phase epitaxy has been investigated. The Raman spectroscopy reveals that the post-growth annealing for the carbon-doped InGaAs base improves the crystallinity to become as good as that of the zinc-doped InGaAs base. However, the photoluminescence intensity remains lower than that of the zinc-doped InGaAs even after the post-growth annealing. The current gains of the carbon- and zinc-doped base InP/InGaAs HBTs are 63 and 75, respectively, and they are affected by the base crystallinity. After the 15-min current stress test, the current gains decreased by 40 and 3% from the initial current gains for zinc- and carbon-doped base HBTs, respectively, are observed. These results indicate that the carbon-doped base HBT is much more reliable than that of zinc-doped base HBT, though it has a lower current gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.