Abstract

Dew-point indirect evaporative cooling (DPIEC) technology is designed and applied as a low carbon-emission and high energy-efficient air conditioning (AC) solution without employing non-environmentally friendly refrigerant and mechanical compressor for cooling in building sector. A more realistic three-dimensional (3-D) model of the DPIEC that better captures the fundamental thermodynamic of its operation is proposed. It considers the variability of air thermal properties and is employed to investigate the DPIEC's performance for three possible arrangements. The 3-D model is classified as configurations 1, 2 and 3 based on the relative flow direction between primary/secondary air and spray water. Experimental results indicate that the model can well evaluate the thermodynamic performance. Additionally, the influence of crucial factors on the performance is parametrically studied by employing three performance indexes. Comparison reveals that configuration 1 can achieve the highest effectiveness and cooling capacity. Results also show that the secondary-to-primary air ratio should be confined to around 0.3 to achieve maximum cooling capacity, and the optimal channel gap should be limited to the range from 3 to 4 mm. Comparatively, the relative flow direction between the spray water and the primary/secondary air has a greater effect on the thermodynamic performance than the spray water inlet velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.