Abstract

In this paper, two distortionless PAPR reduction techniques, Selected Mapping (SLM) and Partial Transmit Sequences (PTS), are compared in terms of PAPR reduction capability and computational complexity for equal number of candidate OFDM symbols. Using MATLAB simulation, it is shown that SLM outperforms PTS in PAPR reduction capability. For small values of the number of subblock partitions, the overall computational complexity of PTS is less than SLM. However, the required PAPR reduction level may not be achieved using small values of number of subblock partitions. Hence, for large values of number of subblock partitions used in PTS, the overall computational complexity of PTS is greater than SLM. In that case, SLM outperforms PTS both in PAPR reduction capability and computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.