Abstract

The effects of the various naturally occurring amino acids on ethanol oxidation in hepatocytes from 18-hrs starved and fed rats were studied. In order to minimize the non-ADH pathways and to avoid interference with the liver amino acid uptake the ethanol concentration used was 4 mM, the amino acids being added at the same concentration. In hepatocytes from starved rats, asparagine, serine, ornithine, hydroxyproline, histidine, cysteine, alanine, glycine, glutamate, glutamine, aspartate and arginine significantly increase ethanol consumption. The stimulatory effect of glutamine being much less pronounced than the asparagine one and proline being devoid of action, the influence of ammonium chloride addition on ethanol consumption in the presence of these amino acids was studied. Ammonium chloride determines an enhancement of ethanol oxidation, the results showing, contrarily to previous data, no apparent correlation between intracellular glutamate concentration and ethanol oxidation rate but rather a relation with aspartate concentration. In hepatocytes from fed rats alanine, asparagine, cysteine, glycine, hydroxyproline, ornithine and serine still increase ethanol oxidation, although to a lesser extent than in cells from starved rats. It appears that only amino acids which are precursors of either pyruvate or aspartate or glutamate are able to activate the ethanol oxidation. Pyruvate, aspartate and glutamate supply malate-aspartate shuttle components especially in cells from starved rats, pyruvate allowing direct cytosolic reoxidation of NADH in cells from fed rats as well as from starved rats. The relative strengths of the stimulatory effect could be roughly dependent on energy demand for glucose synthesis in starved rats and for urea synthesis in fed rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.