Abstract

In this contribution, three different types of CNTs, namely single-walled (SWCNT), multi-walled (MWCNT) and branched MWCNTs were melt mixed in amounts of 0.1–10 wt.-% in polypropylene (PP), polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) using a small-scale microcompounder. The filler dispersion of compression-moulded samples was characterized using light and electron microscopy, and the electrical and thermal properties were measured. The lowest electrical percolation thresholds were found for composites of PP/SWCNT, PP/branched MWCNT and PC/branched MWCNT, which percolated already at <0.1 wt.-% CNT loading. Low values of electrical volume resistivity of about 3 Ohm·cm (PVDF), 7 Ohm·cm (PP) and 2 Ohm·cm (PC) could be reached when loading with 2 wt.-% branched MWCNT. A homogeneous dispersion in the macro- and microlevel was observed especially for composites containing branched MWCNTs. For all CNT types, a matrix nucleation effect was found in PP and PVDF using differential scanning calorimetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.