Abstract

Introducing peroxymonosulfate (PMS) and peroxydisulfate (PDS) into the photocatalytic fuel cell (PFC) system were investigated by comparing the Reactive Brilliant Blue (KN-R) degradation and synchronous electricity production. The two persulfates (PS) themselves are strong oxidant, and could be activated and as electron sacrificial agent in the PFCs, facilitating the photoelectrocatalysis and expanding redox to the entire cell space. Hence, the two established PFC/PS systems manifested prominent cell performances, enhancing the KN-R decomposition and electric power production relative to the virgin PFC. Thereinto, the KN-R removal rate of PFC/PMS was faster than that of PFC/PDS, but an opposite trend appeared in the electricity generation. Besides, the cell performances of the two cooperative systems were evaluated at different operation conditions, including PS dosage, solution pH, and irradiation strength. Moreover, the dye elimination principle was explored by radicals scavenging experiment, and the consequence revealed that hydroxyl radical (HO•), sulfate radical (SO4•ˉ) and singlet oxygen were chief active species in the PFC/PMS, and HO•, SO4•ˉ and superoxide anion played the key roles in the PFC/PDS. Furthermore, the calculated economic indicator demonstrated that the economy of the two synergistic processes were greater than that of UV/PS and solo PFC, and the PFC/PDS was more cost-effective than PFC/PMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.