Abstract
Perfluorinated compounds (PFCs) are usually monitored by high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) on triple quadrupole instruments. Although not yet widely implemented in the field, high-resolution mass spectrometry (HRMS) today appears as a valuable alternative for these halogenated chemicals due to their significant mass defect. Indeed, this second approach offers a way to cope with particular matrix effects caused by co-eluting and isobaric interferences affecting the measurement of some PFCs in fish. The present study compares three different LC-MS-related instruments and various signal acquisition modes, from low-resolution full-scan and selected ion-monitoring (SIM) mode on a triple quadrupole (QqQ) instrument to high-resolution full-scan or product ion-scan mode on orbital trap (LTQ-Orbitrap) or quadrupole-time-of-flight (Q-TOF) devices. Performances are compared for seven model compounds belonging to seven PFCs subclasses: perfluoralkylsulfonate, perfluoroalkylcarboxylate, perfluoroalkylsulfinate, perfluoroalkyl-sulfonamide, fluorotelomer saturated acid, fluorotelomer unsaturated acid and perfluoroalkylphosphonic acid. Low-resolution MS/MS was found to be unsurprisingly reliable for extended multi-residue monitoring. However, the high stability of PFCs leads to a relatively poor and non-specific fragmentation pathway in MS/MS. In addition, biliary acid-interfering compounds (e.g. taurochenodeoxycholic acid), which where encountered in the present case in fish samples but that may be present in other biological samples, were found particularly disturbing in low-resolution MS/MS. Indeed, these interferences presented the same retention time and diagnostic signals as PFOS, leading to a possible overestimation of the PFOS quantification in LC-MS/MS. On the other hand, high-resolution MS and MS/MS (LTQ-Orbitrap and Q-TOF) provided better results in terms of signal specificity and sensitivity. For instance, the estimated limits of detection (LOD) reached for PFOS on QqQ, Q-TOF and LTQ-Orbitrap instruments were 3.8, 0.7 and 0.5 pg injected, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.