Abstract

In this study, the inversion layer mobility characteristics in Si-face 4H silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) with nitrided and phosphorus-doped gate oxides were compared using Hall effect measurements. The inversion layer mobility was evaluated by applying a body bias and changing the temperature. The carrier scattering properties were determined for elevated temperatures (i.e., 473 K), at which point the impact of Coulomb scattering decreases and that of phonon scattering increases. The phonon-limited mobility of these MOSFETs was almost the same when plotted as a function of the effective normal electric field in the inversion layer, possibly representing the nature of the thermally grown SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /SiC interface. On the basis of this finding, the effect of phonon scattering was separated from the inversion layer mobility. The MOSFETs exhibited a remarkable difference in Coulomb scattering: the MOSFETs with phosphorus-doped gate oxide exhibited a more rapid increase in Coulomb-limited mobility with increasing surface carrier density than did the MOSFETs with nitride gate oxide. This resulted from the effective suppression of Coulomb scattering in the inversion layer, which is one of the reasons why phosphorus-doped gate oxide achieves higher inversion layer mobility than nitrided gate oxide. These results show that the inversion layer mobility of SiC MOSFETs can be modeled using a conventional framework of phonon, Coulomb, and surface roughness scattering. Therefore, the suppression of Coulomb scattering is key to further improving the inversion layer mobility of SiC MOSFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.