Abstract
Since the electromagnetic energy gained by the laser wave in a free-electron laser (FEL) is transferred from the kinetic energy loss of a relativistic electron beam, the stability of electron motion is one of the key factors that affect FEL performance. In this paper the stability of electron motion is compared for different focusing regimes. It is demonstrated that the natural focusing regime of a three-dimensional wiggler is easily broken by the self-field of the electron beam. The magnetic focusing regime of an axial guide magnetic field is based on the superposition of a strong Larmor rotation on the transverse quiver motion of the electrons, while the electric focusing regime of an ion-channel guiding field generates an electric force to counteract the divergent effect of the beam self-field. In comparison with the magnetic focusing regime of an external magnetic system, the electric focusing regime of an ion-channel guiding field may yield smaller instantaneous Larmor radius and slighter Larmor-centre deviation from the axis and provide better motion stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.