Abstract

Malaria, caused by infections of the human malaria parasites Plasmodium falciparum, is a global infectious parasitic disease. Each year, about three million people died from malaria and the majority of whom are pregnant women and young children. Recently, a number of research attempt to reduce malaria parasite resistance and the toxicity of anti-malarial drugs. Nowadays, Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a potent drug target to inhibit malarial activity by blocking pyrimidine biosynthesis. In this study, we employed 3D-QSAR Pharmacophore Generation and Docking-Based Pharmacophore Development to build the pharmacophore by using the collected 67 effective inhibitors against PfDHODH. 3D-QSAR Pharmacophore model, Hypo1, shows the high correlation coefficient (0.935), the lowest RMS deviation (2.15), the predicting accuracy of successful rates to training set (89.4%) and test set compounds (72.4%), respectively, revealing favorable predictive ability and is a reliable for further study. Additionally, Docking-Based Pharmacophore model, DBP-All255, exhibits comparable predictive capability to that of Hypo1, while DBP-Top1 shows poor statistical significance. This study reveals pharmacophore features of Hypo1, built by 3D-QSAR Pharmacophore Generation, are well-complementary to the functional residues in the active site of PfDHODH and is of great reliable for database screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.