Abstract

Xylanase is a crucial hydrolytic enzyme that degrades plant polysaccharides in the rumen. To date, there is no information on the genetic composition and expression characteristics of ruminal xylanase during feeding cycles of ruminants. Here, the major xylanase of the glycoside hydrolase family 10 (GH 10) from the rumen of small-tail Han sheep was investigated during a feeding cycle. We identified 44 distinct GH 10 xylanase gene fragments at both the genomic and transcriptional levels. Comparison of their relative abundance showed that results from the evaluation of functional genes at the transcriptional level are more reliable indicators for understanding fluctuations in xylanase levels. The expression patterns of six xylanase genes, detected at all time points of the feeding cycle, were investigated; we observed a complex trend of gene expression over 24 h, revealing the dynamic expression of xylanases in the rumen. Further correlation analysis indicated that the rumen is a dynamic ecosystem where the transcript profiles of xylanase genes are closely related to ruminal conditions, especially rumen pH and bacterial population. Given the huge diversity and changing composition of enzymes over the entire rumen, this research provides valuable information for understanding the role of functional genes in the digestion of plant material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.