Abstract
The barnacle Balanus amphitrite (=Amphibalanus amphitrite) is a major marine biofouling invertebrate worldwide. It has a complex life cycle during which the larva (called a nauplius) molts six times before transforming into the cyprid stage. The cyprid stage in B. amphitrite is the critical stage for the larval decision to attach and metamorphose. In this study, proteome and phosphoproteome alterations during cyprid development/aging and upon treatment with the antifouling agent butenolide were examined with a two-dimensional electrophoresis (2-DE) multiplexed fluorescent staining approach. Optimized protein separation strategies, including solution-phase isoelectric fractionation and narrow-pH-range 2-DE, were used in a proteomic analysis. Our results show that the differential regulation of the target proteins is highly dynamic on the levels of both protein expression and posttranslational modification. Two groups of proteins, stress-associated and energy metabolism-related proteins, are differentially expressed during cyprid development. Comparison of the control and treatment groups suggests that butenolide exerts its effects by sustaining the expression levels of these proteins. Altogether, our data suggest that proteins involved in stress regulation and energy metabolism play crucial roles in regulating larval attachment and metamorphosis of B. amphitrite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.