Abstract

PurposeThe aim of this study was to evaluate the use of dehydrated human amnion/chorion membrane (dHACM) to repair perforated sinus membranes in rabbits.MethodsBilateral surgical windows (7.5-mm diameter) were prepared on the nasal bones of 14 rabbits. Standardized circular perforations (5-mm diameter) were made in the sinus membrane by manipulating implant twist drills. The perforated sinus membranes were repaired using dHACM or a resorbable collagen membrane (CM). The negative control (NC) group did not undergo perforated sinus membrane repair, while the positive control (PC) group underwent sinus augmentation without perforations. The same amount of deproteinized porcine bone mineral was grafted in all 4 groups. After 6 weeks, micro-computed tomography (micro-CT) and histomorphometric evaluations were conducted.ResultsThe micro-CT analysis revealed that the total augmented volume was not significantly different among the groups. In the dHACM group, newly formed bone filled the augmented area with remaining biomaterials; however, non-ciliated flat epithelium and inflammatory cells were observed on the healed sinus membrane. Histometric analysis showed that the percentage of newly formed bone area in the dHACM group did not differ significantly from that in the CM group. The dHACM group showed a significantly higher percentage of newly formed bone area than the NC group, but there was no significant difference between the dHACM and PC groups.ConclusionsdHACM could be a feasible solution for repairing sinus membrane perforations that occur during sinus floor augmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.