Abstract

We have explored the electronic natures of representative expanded porphyrins, [26]- and [28]hexaphyrins, to investigate the interplay between the aromaticity and antiaromaticity that is brought by two electron oxidation/reduction processes. The excited singlet and triplet states of [26]hexaphyrin in solution exhibit lifetimes of 125 ps and 1.8 mus, respectively, as revealed by various time-resolved spectroscopic measurements. On the other hand, [28]hexaphyrin shows faster singlet and triplet lifetimes than those of [26]hexaphyrin, which is largely in accordance with the perturbation of aromaticity due to the pi electron formulation of [4n] in [28]hexaphyrins. The two-photon absorption cross-section values at 1200 nm for [26]hexaphyrins show ca. 9890 GM which is >10(2) larger than those of porphyrins. The reduced TPA values of 2600 and 810 GM of [28]hexaphyrin and perfluorinated [28]hexaphyrin, respectively, match well with their relatively short excited-state lifetimes. Overall, the enhanced excited-state lifetimes for various hexaphyrins go in line with the increased TPA cross-section values and the ring planarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.