Abstract
Nowadays, an efficient alternative to expensive enhancement of protective equipment is superconducting fault current limiters (SFCLs), which provide economic remedies to intercept the existing protective devices in the power system from being severely affected by excessive currents. In this paper, resistive- and active-type SFCLs are applied separately to reduce the fault current. The active SFCL is a combination of a transformer which is lossless (superconducting) and a voltage-controlled PWM converter. The converter equivalent impedance is controlled for current suppression, whereas the resistive-type SFCL will compare the fault current with the reference value and introduces some resistance based on the increase in temperature. Both resistive- and active-type SFCLs are designed in MATLAB and added into a test system of 100 MVA, 33 kV. The results presented show that active SFCL reduces more fault current in comparison with the resistive SFCL in the considered network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.