Abstract
The volumes of the ten largest subcortical auditory nuclei were measured individually in a sample of 53 mammals, including 16 Australian and four American marsupials. The nuclear sizes relative to the total of subcortical auditory tissue were normalized and then analyzed individually for statistically reliable deviations. The overall form of the entire system of ten nuclei and two nuclear subsystems (cochlear nuclei, superior olives) were also analyzed for similarities and notable deviations among the animals. The results show that the absolute size of the auditory system varies more than 139-fold among the 53 mammals (with moles the smallest and humans the largest). Log auditory system volume and log brain weight are closely correlated (r = 0.903, p <0.0001). Bats, kangaroo rats, marmosa opossums, and Norway rats have the largest auditory systems relative to their brain size, while humans have the smallest by far. The other primates also have auditory system/brain size ratios smaller than the sample average, suggesting that the condition in humans is one result of an expansion of non-auditory brain parts rather than a reduction of the auditory system over geological time. The relative sizes of the ten nuclei are well ordered, with the inferior colliculus the largest nucleus by far and medial superior olive the smallest. Because the size of the superior olives, collectively, is reliably related to the size of anteroventral cochlear nucleus (r = 0.744, p <0.001), and not to the size of dorsal cochlear nucleus, the interconnectivity of the subcortical auditory system is probably a factor in the size of the nuclei. In its overall form, the subcortical auditory system is highly similar among mammals, with an average correlation across nuclei of 0.923. This high value means that the overall form of the system has been relatively stable over geological time. The animals with least deviation from the average form are ring-tailed possums, bandicoots, and yellow-bellied gliders, all marsupials. Those with the most unusual forms are mice, bats, and kangaroo rats, all placentals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.