Abstract
The effects of short-range electron correlation, long-range electron exchange, local and nonlocal parts of density, higher order gradients of density, and adding some percentage of Hartree–Fock exchange to the functional on the prediction of geometrical parameters were investigated. A copper complex namely 1,2-bis(1,4,7-triaza-1-cyclononyl) ethane copper (II) with Jahn–Teller distortion in octahedral geometry was used to evaluate the performance of 50 commonly available density functionals. The standard 3-21G basis set was used for all light elements, while pseudo potential LANL2DZ was used for the copper atom. The best bond lengths and bond angles were obtained using M05-2x and OP functionals respectively. Also in order to more accurate survey the performance of B3LYP, we used this functional with two all-electron basis sets (6-31G and 3-21G) and three basis sets involving effective core potentials (LANL2DZ/3-21G, LANL2DZ, and LACVP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.