Abstract
BackgroundLactobacillus buchneri is a lactic acid bacterium frequently associated with food bioprocessing and fermentation and has been found to be either beneficial or detrimental to industrial food processes depending on the application. The ability to metabolize lactic acid into acetic acid and 1,2-propandiol makes L. buchneri invaluable to the ensiling process, however, this metabolic activity leads to spoilage in other applications, and is especially damaging to the cucumber fermentation industry. This study aims to augment our genomic understanding of L. buchneri in order to make better use of the species in a wide range of applicable industrial settings.ResultsWhole-genome sequencing (WGS) was performed on seven phenotypically diverse strains isolated from spoiled, fermented cucumber and the ATCC type strain for L. buchneri, ATCC 4005. Here, we present our findings from the comparison of eight newly-sequenced and assembled genomes against two publicly available closed reference genomes, L. buchneri CD034 and NRRL B-30929. Overall, we see ~ 50% of all coding sequences are conserved across these ten strains. When these coding sequences are clustered by functional description, the strains appear to be enriched in mobile genetic elements, namely transposons. All isolates harbor at least one CRISPR-Cas system, and many contain putative prophage regions, some of which are targeted by the host’s own DNA-encoded spacer sequences.ConclusionsOur findings provide new insights into the genomics of L. buchneri through whole genome sequencing and subsequent characterization of genomic features, building a platform for future studies and identifying elements for potential strain manipulation or engineering.
Highlights
Lactobacillus buchneri is a lactic acid bacterium frequently associated with food bioprocessing and fermentation and has been found to be either beneficial or detrimental to industrial food processes depending on the application
Lactobacillus buchneri is a lactic acid bacterium naturally found in varying ecological niches and is typically associated with food production and fermentation processes [1, 2]
Previous genomic characterization of L. buchneri CD034 revealed the presence of enzymes required to convert lactic acid to acetic acid and CO2 in the presence of oxygen, or 1,2-propanediol anaerobically, a unique metabolic feature protecting against acidification of the cytoplasm in the presence of large amounts of lactate [5]
Summary
Lactobacillus buchneri is a lactic acid bacterium frequently associated with food bioprocessing and fermentation and has been found to be either beneficial or detrimental to industrial food processes depending on the application. Lactobacillus buchneri is a lactic acid bacterium naturally found in varying ecological niches and is typically associated with food production and fermentation processes [1, 2] This species has been isolated from a variety of environments, including fermented cucumber spoilage [3, 4], grass silage [5], a bioethanol production plant [6, 7], the human intestine and oral cavity [8, 9], cheese [10, 11], and in beer wort [12, 13]. Previous genomic characterization of L. buchneri CD034 revealed the presence of enzymes required to convert lactic acid to acetic acid and CO2 in the presence of oxygen, or 1,2-propanediol anaerobically, a unique metabolic feature protecting against acidification of the cytoplasm in the presence of large amounts of lactate [5]. This ability to convert lactic acid to acetic acid under both aerobic and anaerobic conditions makes L. buchneri useful in the aerobic stabilization of silage, effectively
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.