Abstract

BackgroundA new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III) oxides much faster than the wildtype strain, PCA. The genome of KN400 was compared to wildtype with the goal of discovering how the network for extracellular electron transfer has changed and how these two strains evolved.ResultsBoth genomes were re-annotated, resulting in 14 fewer genes (net) in the PCA genome; 28 fewer (net) in the KN400 genome; and ca. 400 gene start and stop sites moved. 96% of genes in KN400 had clear orthologs with conserved synteny in PCA. Most of the remaining genes were in regions of genomic mobility and were strain-specific or conserved in other Geobacteraceae, indicating that the changes occurred post-divergence. There were 27,270 single nucleotide polymorphisms (SNP) between the genomes. There was significant enrichment for SNP locations in non-coding or synonymous amino acid sites, indicating significant selective pressure since the divergence. 25% of orthologs had sequence differences, and this set was enriched in phosphorylation and ATP-dependent enzymes. Substantial sequence differences (at least 12 non-synonymous SNP/kb) were found in 3.6% of the orthologs, and this set was enriched in cytochromes and integral membrane proteins. Genes known to be involved in electron transport, those used in the metabolic cell model, and those that exhibit changes in expression during growth in microbial fuel cells were examined in detail.ConclusionsThe improvement in external electron transfer in the KN400 strain does not appear to be due to novel gene acquisition, but rather to changes in the common metabolic network. The increase in electron transfer rate and yield in KN400 may be due to changes in carbon flux towards oxidation pathways and to changes in ATP metabolism, both of which indicate that the overall energy state of the cell may be different. The electrically conductive pili appear to be unchanged, but cytochrome folding, localization, and redox potentials may all be affected, which would alter the electrical connection between the cell and the substrate.

Highlights

  • A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III) oxides much faster than the wildtype strain, PCA

  • Geobacter species can be used to make microbial fuel cells - devices in which electrical current is harvested from bacteria that grow by transferring electrons from their food source to the anode of the device [1,2,3]

  • Pure cultures of Geobacter sulfurreducens produce current densities that are among the highest known [4], and G. sulfurreducens has been enriched from a number of complex communities growing in biofilms on high-efficiency microbial fuel cells [3]

Read more

Summary

Introduction

A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III) oxides much faster than the wildtype strain, PCA. Geobacter species can be used to make microbial fuel cells - devices in which electrical current is harvested from bacteria that grow by transferring electrons from their food source to the anode of the device [1,2,3]. A new strain of G. sulfurreducens, designated strain KN400, was isolated that is much more effective than wildtype both in electron transfer to electrodes [5] and in Fe(III) oxide reduction (KA Flanagan, personal communication). Compared to the wildtype strain, when growing in microbial fuel cells KN400 forms biofilms on the anode more rapidly; it produces much higher-density current (7.4 versus 1.4 A/m2) and power (3.9 versus 0.5 W/m2) [5]; and it has higher conductivity (350 versus 75 μS/cm) [6]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.