Renewable Energy | VOL. 147

Comparative evaluation of two biomass direct-fired power plants with carbon capture and sequestration

Publication Date Mar 1, 2020


Abstract The biomass direct-fired power plant with carbon capture and sequestration is promising to remove CO2 from air whilst generate electricity. However, the efficiencies of such power plants are usually low, and the life cycle CO2 emission of such power plants is seldom determined. To solve these issues, a novel chemical looping oxy-fired power plant with carbon capture and sequestration is proposed in this work. The proposed system is then modeled and compared with the conventional biomass air-fired plant in terms of thermodynamics and economics. All the sub-unit models of the two power plants are validated by reported data in literature. Sensitivity analyses are then implemented to investigate the effects of different key operation parameters on the system essential performance indicators. Under the optimum conditions, the power generation efficiency, the levelized cost of electricity, the CO2 capture rate, the annual power generation and the annual CO2 mitigation of the proposed system (or the conventional system) are 35.7% (31.5%), 0.0522$/kWh (0.0601$/kWh), 100% (98%), 1443.7 × 109 kWh/year (1241.81 × 109 kWh/year) and 1.191 × 109 t/year (1.159 × 109 t/year), respectively. The key findings of this work are of reference value for the construction, operation and optimization of the biomass direct-fired power plants with carbon capture and sequestration.

Powered ByUnsilo

Carbon Capture
Power Plants
CO2 Capture Rate
Annual Power Generation
Carbon Sequestration
Key Operation Parameters
Power Generation Efficiency
Proposed System
Optimization Of Power Plants
Construction Of Power Plants

Introducing Weekly Round-ups!Beta

Powered by R DiscoveryR Discovery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 15, 2021 to Nov 21, 2021

R DiscoveryNov 22, 2021
R DiscoveryArticles Included:  3

In ‘Climate change adaptation for managing non-timber forest products in the Nepalese Himalaya’, Lila Gurung et al. (2021) noted that non-timber fores...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard