Abstract

Heat-activated polymethyl methacrylate (PMMA) is the most common and widely accepted denture base material. Two important drawbacks are the development of denture stomatitis and the high incidence of fracture of denture bases. The present study investigated the effect of adding 0.2% by weight of silver nanoparticles (AgNps) and using the autoclave method of terminal boiling on the flexural strength of heat-activated PMMA denture base resin. A total of 40 samples of heat-activated PMMA blocks were divided into four groups, with 10 samples (n = 10) in each group. Group 1 consisted of unmodified heat-activated PMMA resin (PMMA-1) polymerized by the conventional method of terminal boiling (conventional curing); Group 2 consisted of 0.2% by weight AgNPs added to heat-activated PMMA resin (PMMA-2) polymerized by conventional curing; Group 3 consisted of PMMA-1 polymerized by the autoclave method of terminal boiling (autoclave curing); and Group 4 consisted of PMMA-2 polymerized by autoclave curing. The flexural strength was tested using a universal testing machine. Descriptive statistics were expressed as mean ± SD and median flexural strength. Kruskal-Wallis ANOVA with Mann-Whitney U post hoc test was applied to test for statistical significance between the groups. The level of significance was set at p<0.05. The results showed a statistically significant reduction in flexural strength in Group 2 compared to Group 1. The samples from Group 4 showed a statistically significant increase in flexural strength compared to Group 2. The Group 4 denture base had the highest flexural strength (115.72 ± 7.27 MPa) among the four groups, followed by Group 3 (104.16 ± 4.85 MPa). The Group 1 samples gave a flexural strength of 101.45 ± 3.13 MPa, and Group 2 gave the lowest flexural strength (85.98 ± 3.49 MPa) among the four groups tested. The reduction in flexural strength of the heat-activated PMMA denture base after adding 0.2% by weight of AgNP as an antifungal agent was a major concern among manufacturers of commercially available denture base materials. It was proved in the present study that employing the autoclave curing method of terminal boiling for the polymerization of 0.2% by weight of AgNp-added heat-activated PMMA denture base resulted in a significantly higher flexural strength compared to the conventional curing method of terminal boiling for polymerization. Unmodified heat-activated PMMA gave higher flexural strength values when polymerized by autoclave curing compared to the conventional curing method of terminal boiling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.