Abstract
The replacement of native pasture by exotic commercial forest species is an infrequent situation worldwide. In these systems, a new component is introduced, forest litter, which constitutes one of the main ways of incorporating carbon into the soil–plant system. The present work seeks to establish a methodological approach to study the dynamics of litter production and decomposition in an integrated way. The general objective was to characterize and compare the litter production dynamics in 14-year-old Eucalyptus grandis Hill ex Maiden and Pinus taeda L. commercial plantations. During two years, seasonal evaluations of fall, decomposition and accumulation of litter were carried out in stands of both species. In turn, the contribution of carbon from forest species to the soil through isotopic analysis techniques was quantified. Litterfall in E. grandis showed maximums during the spring of the first year and in the spring and summer of the second. In P. taeda, the maximums occurred in summer of the first year and in autumn of the second. In relation to the decomposition rate, the results based on short periods of evaluation between 15 and 21 months did not show differences between species, nor for the different moments of beginning of the evaluation, obtaining average values of 0.0369 month−1 for E. grandis and 0.0357 month−1 for P. taeda. In turn, both the decomposition rate of the material as a whole and the estimates of accumulated biomass in equilibrium state did not show significant differences between the species. Additionally, there was a relevant incorporation of carbon into the soil by forest species, fundamentally in the first few centimeters, substituting an important proportion of the carbon inherited by the original cover of native pastures. Finally, it is necessary to specify that the scope of the findings obtained is greatly limited by the sample size used in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.