Abstract

Eukaryotic transcription factors (TFs) activate gene expression by recruiting cofactors to promoters. However, the relationships between TFs, promoters and their associated cofactors remain poorly understood. Here we combine GAL4-transactivation assays with comparative CRISPR-Cas9 screens to identify the cofactors used by nine different TFs and core promoters in human cells. Using this dataset, we associate TFs with cofactors, classify cofactors as ubiquitous or specific and discover transcriptional co-dependencies. Through a reductionistic, comparative approach, we demonstrate that TFs do not display discrete mechanisms of activation. Instead, each TF depends on a unique combination of cofactors, which influences distinct steps in transcription. By contrast, the influence of core promoters appears relatively discrete. Different promoter classes are constrained by either initiation or pause-release, which influences their dynamic range and compatibility with cofactors. Overall, our comparative cofactor screens characterize the interplay between TFs, cofactors and core promoters, identifying general principles by which they influence transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.