Abstract
Over the last decade, Li7La3Zr2O12 (LLZO) has shown to be one of the most promising materials as a solid electrolyte in Li-ion batteries. However, several factors can affect the final electrochemical properties of the material, such as the synthesis method and the inclusion of dopants. In this study, we conduct a comparative analysis of undoped and Al-doped LLZO prepared through solid state and sol-gel methods. An in-situ thermal investigation on the synthesis of LLZO shows how solid state synthesis forms LLZO at lower rates, however the resulting LLZO is more stable at higher temperatures. The addition of Al as a dopant further increases the thermal stability of the material by lowering its decomposition rate. Ionic conductivity measurements reveal how sol-gel LLZO samples experience several times higher conductivity than their solid state counterparts due to tightly interconnected grains. With the addition of Al, the conductivity further increases by two orders of magnitude. With that we are able to achieve the highest ionic conductivity of 4.96 × 10−4 S/cm for Al-doped sol-gel LLZO and an activation energy of 0.28(1) eV. This work provides a better understanding of how different synthesis methods affect the final properties of LLZO solid electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.