Abstract

Due to the increasing attention for the residual of per- and polyfluorinated compounds in environmental water, Sodium p-Perfluorous Nonenoxybenzenesulfonate (OBS) have been considered as an alternative solution for perfluorooctane sulfonic acid (PFOS). However, recent detections of elevated OBS concentrations in oil fields and Frontal polymerization foams have raised environmental concerns leading to the decontamination exploration for this compound. In this study, three advanced reduction processes including UV-Sulfate (UV-SF), UV-Iodide (UV-KI) and UV-Nitrilotriacetic acid (UV-NTA) were selected to evaluate the removal for OBS. Results revealed that hydrated electrons (eaq−) dominated the degradation and defluorination of OBS. Remarkably, the UV-KI exhibited the highest removal rate (0.005 s−1) and defluorination efficiency (35 %) along with the highest concentration of eaq− (K = −4.651). Despite that nucleophilic attack from eaq− on sp2 carbon and H/F exchange were discovered as the general mechanism, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) analysis with density functional theory (DFT) calculations revealed the diversified products and routes. Intermediates with lowest fluorine content for UV-KI were identified, the presence nitrogen-containing intermediates were revealed in the UV-NTA. Notably, the nitrogen-containing intermediates displayed the enhanced toxicity, and the iodine poly-fluorinated intermediates could be a potential-threat compared to the superior defluorination performance for UV-KI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.