Abstract

The photovoltaic-thermoelectric (PV-TE) system has emerged as a focal point in research endeavors aimed at harnessing the full spectrum of solar energy and enhancing the efficacy of solar power generation. Owing to the variations in bandgap and inherent material properties across diverse photovoltaic cells, the capacity to utilize the solar spectrum of PV-TE systems can be significantly affected when using different photovoltaic cells. Historically, investigations into the influence of photovoltaic cells on PV-TE systems have been predominantly rooted in theoretical simulations. These examinations have primarily concentrated on the holistic system efficiency under varying temperature conditions. In this study, we integrated three distinct types of photovoltaic cells into PV-TE systems. Both simulation and experimental methodologies were employed to evaluate the impact of these photovoltaic cell types on the PV-TE systems' performance. Additionally, we compared the back temperatures of standard PV systems with those of PV-TE systems. The average photovoltaic conversion efficiencies of PV-TE systems equipped with CIGS, CdTe, and a-Si photovoltaic cells were 21.9%, 19.7%, and 12.7%, respectively. Meanwhile, the average efficiencies of TEG were 0.256%, 0.102%, and 0.083% respectively, with average backplate temperatures of 39.3 °C, 44.0 °C, and 40.5 °C. The temperature disparities between the back of standard photovoltaic systems and PV-TEG-PCM systems stood at 4.70 °C, 2.32 °C, and 3.43 °C, respectively. Notably, CIGS photovoltaic cells, which harness a specific range of the solar spectrum more effectively, showcased superior performance. Furthermore, a broader usable solar spectrum band for a PV cell doesn't always translate to enhanced performance. These findings offer valuable insights for optimizing the power generation capabilities of photovoltaic-thermoelectric systems leveraging full-spectrum solar energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.