Abstract
The Jiani yak is a nationally renowned species that is known for its meat which is rich in various minerals, amino acids, and proteins. The rumen microbiota plays a critical role in gastrointestinal health and feed degradation, contributing proteins, lipids, and volatile fatty acids (VFAs) essential for milk and meat production. However, there is limited knowledge about the microbiota of free-ranging Jiani yaks, especially those with 15 ribs. Rumen fluid samples were collected from yaks with 14 (PL) ribs and 15 (DL) ribs from a slaughterhouse in Jiani County, China. The total DNA of rumen fluid microorganisms was extracted for microbiota sequencing. Our results revealed 643,713 and 656,346 raw sequences in DL and PL animals, respectively, with 611,934 and 622,814 filtered sequences in these two yak groups. We identified 13,498 Amplicon Sequence Variants (ASVs), with 2623 shared between DL and PL animals. The ratio of Bacteroidota to Firmicutes differed between PL (3.04) and DL (2.35) animals. Additionally, 6 phyla and 21 genera showed significant differences between yaks with 14 and 15 ribs, leading to altered microbiota functions, with 51 and 35 notably different MetaCyc and KEGG pathways, respectively. Hence, the microbiota of yaks with 15 ribs differs from those with 14 ribs. Therefore, these microbiota-related comparative investigations will provide insights into yak husbandry practices and genetic selection strategies for their improved productivity in harsh environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.