Abstract

AbstractA popular technique to control dynamical systems is the implementation of tuned-mass dampers. Most tuned-mass dampers only transfer the mechanical energy of the primary system to a secondary system, but it is desirable to convert the primary systems’ mechanical energy into usable electric energy. A piezoelectric energy harvester is used in this study. Furthermore, amplitude stoppers are included to possibly generate a broadband region by causing a nonlinear interaction. Mechanical stoppers have been investigated to sufficiently widen the response of piezoelectric energy harvesters. The effectiveness of the stoppers type is also investigated by comparing magnetic stoppers to mechanical stoppers. A nonlinear reduced-order model using Galerkin discretization and Euler-Lagrange equations is developed. The goal of this study is to maximize the energy harvested from the absorber without negatively affecting the control of the primary structure.KeywordsNonlinear dynamicsEnergy harvesting absorberMechanical stoppersMagnetic forces

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.