Abstract

This comparative analysis studies the impact of two different nanoparticles Copper and Copper Oxide in two different partially ionized magnetofluid (water and kerosene oil mixed with Copper/Copper Oxide) flows over a linearly stretching surface. The impacts of electrons and ions collisions in the presence of the Cattaneo-Christov heat transfer model are also investigated. The effects of prominent parameters on velocity and temperature fields are depicted through graphical illustrations. A similarity transformation procedure is applied to transform the nonlinear partial differential equations to the ordinary one. Our numerical methodology is based upon the Finite difference method that is the default method in the bvp4c built-in function of the MATLAB scheme. Nusselt number and Skin drag coefficient are computed numerically and presented in tabular form for both types of nanofluids over a linear stretched surface. Our results demonstrate that the effects of CuO are dominant in comparison to the Cu on fluid velocity. The fluid temperature is more prominent in the case of Cu-water nanofluid when we increase nanoparticles concentration.

Highlights

  • This comparative analysis studies the impact of two different nanoparticles Copper and Copper Oxide in two different partially ionized magnetofluid (water and kerosene oil mixed with Copper/Copper Oxide) flows over a linearly stretching surface

  • This comparative analysis studies the impact of two different nanoparticles Copper and Copper Oxide in two different partially ionized magnetofluid flows over a linearly stretching surface

  • It is again noted that whenever velocity increases, the partially ionized fluid velocity of CuO-water nanofluid is higher than the other nanofluids, the same as discussed for Fig. 2

Read more

Summary

Introduction

This comparative analysis studies the impact of two different nanoparticles Copper and Copper Oxide in two different partially ionized magnetofluid (water and kerosene oil mixed with Copper/Copper Oxide) flows over a linearly stretching surface. It is noted that there is no such study in which Cu/CuO-water and Cu/CuOkerosene oil partially ionized nanofluids are discussed with CC heat flux model over a linearly stretching surface.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.